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Abstract. We offer a game-theoretic proof of Hamilton’s rule for the spread of
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1 Introduction

Evolutionary biologists have developed a powerful theory of the evolutionary foun-
dations of altruism between relatives. The theory is based on the idea that individuals
who are related by blood share genes. Consider a gene that governs a particular be-
havior. The likelihood that the gene will be replicated is higher when the gene takes
into account not only the extra reproductive opportunities that the behavior con-
fers on the host who carries the gene but also the extra reproductive opportunities
that the behavior confers on relatives of the host who also carry the gene. William
Hamilton, the pioneer of this theory, describes it as follows: “The social behavior
of a species evolves in such a way that in each distinct behavior-evoking situation
the individual will seem to value his neighbor’s fitness against his own according
to the coefficients of relationship appropriate to that situation” (Hamilton, 1964,
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p-19). The coefficient of relationship between two individuals is the probability that
arandomly selected gene in one of these individuals will have an exact copy located
in the other individual as a result of descent from a common ancestor. In the case
of a haploid population in which each parent has a single gene for being altruistic
or selfish and mating is monogamous, the coefficient of relationship between two
siblings is 1/o.

“Hamilton’s rule” is that altruism will spread in a population if the benefit
obtained from giving times the coefficient of relationship exceeds the cost of giving.
If c is the cost to oneself of helping a sibling, and b is the benefit to a sibling from
receiving help, altruism will spread if b- 1/» > c, that is, if the benefit obtained from
help exceeds twice the cost of helping.

The purpose of this paper is to complement the large and important literature
that followed Hamilton’s pioneering articles, both in evolutionary biology (notably
Dawkins, 1976; Grafen, 1984; Wilson, 1987) and beyond (Axelrod, 1984; Hofbauer
and Sigmund, 1988; Binmore and Samuelson, 1992; Nowak and May, 1992), with
a formal game-theoretic proof of Hamilton’s rule. Building on Bergstrom and Stark
(1993), Bergstrom (1995), and Stark (1999), this paper provides a proof of the rule
for a simple case of siblings.

In evolutionary economics, the study of altruism is motivated by two questions:
where does altruism come from and what does it give rise to. The incentive to explore
inclinations is not independent, however, from the density of implications. If the
motivation to produce, the propensity to redistribute, and the tendency to accumulate
and transfer — within families, societies, and across generations — matter both for
individual well-being and for social welfare, and if these processes are governed
or significantly affected by the incidence and intensity of altruism as a trait, we
would like to find out how the trait evolves. The interest in economics, and beyond,
in the evolution, survival, and extinction of institutions of various types cannot be
orthogonal to the interest in the prevalence and intensity of altruism if altruism
gives rise to patterns and predispositions that completely or partially substitute
for institutional mandates, impinge on the design of institutions, crowd out their
roles, or render their mission superfluous. All the more so when there is a close
correspondence between altruism and cooperation.! Since altruism is practiced and
manifested socially, it is natural to start the search for its prevalence and origins in
small social groupings such as the family. It is more likely that altruism will pervade
large groupings such as the population at large if it evolves between siblings than
if it fails to gain a foothold even within families.

!' The inquiry pursued in this paper relates to the study of institutions in yet another way. Schelling
(1960, 1971, 1978) has shown how the interactions of individuals in environments characterized by
bounded rationality and imperfect information coalesce over time into customs, norms, and institu-
tions that govern economic and social life. Schelling’s pioneering work was recently supplemented
significantly by Young’s study of economic and social institutions. To Young (1998) an institution is an
established law, custom, usage, practice, organization. (Examples of institutions are aplenty: rules of
the road, time of lunch, patterns of marriage, forms of economic contracts.) Young develops a theory
that predicts how institutions evolve and characterizes their welfare properties. Viewing Hamilton’s rule
as an institution places this paper’s inquiry in that research vein.
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2 The game and a general result

In each period there is an old generation and a young generation. A fraction of the old
generation consists of altruists, a complementary fraction consists of nonaltruists.
Members of the old generation are matched with uniform probabilities into pairs.
Each pair breeds two children. The children constitute the young generation. The
two siblings play a one-shot prisoner’s dilemma game with each other. A sibling
can help the other sibling at a cost to himself. Let c be the cost to a sibling of helping
a sibling, and let b be the benefit to the sibling who receives the help, b > ¢ > 0.
We obtain the following payoff matrix:

Column sibling

‘ c D
Row sibling g ‘ b= Z’ b_; ¢ 78’8

where playing C stands for providing help and playing D stands for not offering
help. A sibling who plays C' is altruistic, a sibling who plays D is nonaltruistic. To
see this suppose the column sibling selects C'. If the row sibling selects C' rather
than D, he gives up b to receive the smaller b — ¢, whereas the column sibling
gains since he receives b — ¢ which is larger than —c. Suppose, alternatively, that
the column sibling selects D. Again, if the row sibling selects C rather than D, his
payoff declines (by c), while the column sibling’s payoff rises (by b). This defines
altruism: giving up something for the sake of another. Thus, throughout the rest of
this paper we identify altruism with playing cooperatively in the one-shot prisoner’s
dilemma game.

Let (p, 1 — p) denote the mixed strategy in which the row sibling plays C' with
probability p; and let (¢, 1 — ¢) denote the mixed strategy in which the column
sibling plays C' with probability ¢. Then, for any given (p, q), the expected payoffs
of the row and column siblings are gb — pc and pb — gc, respectively. Let p; and pg
be the probabilities that the row sibling plays C' if the column sibling plays C and
D, respectively. We now provide a game-theoretic proof of Hamilton’s rule for a
simple case of siblings.

Proposition (Hamilton’s rule). If ¢ is the cost to oneself of helping a sibling, and b is
the benefit to a sibling from receiving help, altruism will spread if b- (p; — po) > ¢,
that is, p; — po is the equivalent of the coefficient of relationship.

Proof. Cooperation will be globally stable if the expected payoff of a randomly
selected cooperator child is larger than the expected payoff of a randomly selected
defector child. Without loss of generality, we randomly select the column sibling.
The expected payoff of a randomly selected cooperator column sibling is p1b — ¢
since (p,q) = (p1,1), and the expected payoff of a randomly selected defector
column sibling is pob since (p,q) = (po, 0). Hence, cooperation will be globally
stable if p;b — ¢ > pob, yielding the statement of the proposition. O
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3 The rule of imitation, survival, and the outcome: a special case

We assume that how a child plays, C or D, is determined through the imitation of
his parents, and that each child imitates one of his parents with equal probabilities.
The probability that a child survives to reproduce (to have his own children) is
proportional to the payoff in the game. For example, consider a case in which the
payoff positively influences the probability of reaching maturity and of being able
to procreate.

Let x be the proportion of cooperative parents, and let 1 — = be the proportion
of defector parents.

Claim 1. The probability that a randomly chosen child is a cooperator is x.

Proof. Let N be the number of individuals in the old generation. Hence, the
number of parent pairs is g Cooperator children come either from cooperator-
cooperator parent pairs or from cooperator-defector parent pairs. The number
of cooperator-cooperator marriages is g:rz. All 5x2 -2 = N2z? children of
these marriages are cooperators. The number of cooperator-defector marriages is
5 [(1 —2)+ (1 —z)a] = Nz (1 — z) which is also the number of cooperator

children produced by such marriages. Hence, the total number of cooperator chil-
dren is No2 + Nz (1 — 2) = Nz. In a population of N children, the probability

then that a randomly chosen child is a cooperator is N =T m]

Claim 2. Given that a child is a cooperator, the conditional probability that its

sibling is a defector is

Proof. A cooperator-defector pair of children results from a mixed marriage. Half

of these Nx (1 — x) marriages produce mixed sibling pairs. The number of coop-
1

erator children in the mixed sibling pairs from these marriages is §N x(1—x).

As already shown, the total number of cooperator children is Nz. Given that a

child is a cooperator, the conditional probability that its sibling is a defector is
sNz(l—z) 1-z

O
Nz 2
Given that a child is a cooperator, the conditional probability that its sibling is
1-— 1
a cooperator is the complementary probability 1 — 5 T ; a:'

By replacing  for 1 —x we get that given that a child is a defector, the conditional
probability that its sibling is a cooperator is g (Given that a child is a defector, the

conditional probability that its sibling is a defector is the complementary probability
x

1——.
5)

Claim 3. Cooperation will be globally stable if b > 2c.
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1
Proof. Since in this case p; = ;x and pg = g, the claim follows from the

proposition.

Evolutionary biologists refer to “inclusive fitness” of an individual. In the
present model the inclusive fitness of a cooperator parent is the expected payoff of
a randomly selected cooperator child, and the inclusive fitness of a defector parent
is the expected payoff of a randomly selected defector child. The inclusive fitness
of a cooperator is larger than the inclusive fitness of a defector, and cooperation is
globally stable if the benefit to a child from playing cooperatively (helping) exceeds
twice the child’s own cost of playing cooperatively (helping). O

4 Conclusion

We have shown that in a simple case of siblings, Hamilton’s rule can be derived as
the outcome of a prisoner’s dilemma game between siblings. We employed several
simplifying assumptions. These may be relaxed. For example, the formation of
couples can be more selective than random. As shown in the Appendix, however,
this change will only strengthen the case for cooperation.

Appendix

To substantiate the claim that a non-random formation of couples will only
strengthen the case for cooperation, note that if matching is purely (positively)
assortative, the fractions of cooperator marriages and defector marriages are,
respectively, z and 1 — z. To allow matching patterns that are intermediate between
the polar cases of purely random matching and purely assortative matching, we
define a parameter m where 0 < m < 1, such that when matching is purely
random m = 0, and when matching is purely assortative m = 1. The number of

cooperator-cooperator marriages is then 5 [z + ma(1 — z)], and the number of

cooperator-defector marriages is N(1 — m)z(1 — x).
It follows that the probability that a randomly chosen child is a cooperator is
x; given that a child is a cooperator, the conditional probability that its sibling is

1—

a defector is (1 — m)Tm; given that a child is a cooperator, the conditional
1 —

probability that its sibling is a cooperator is 1 — (1 — m)Tx; and given that

a child is a defector, the conditional probability that its sibling is a cooperator is

(1- m)g (Given that a child is a defector, the conditional probability that its
1—

sibling is a defectoris 1 — (1 —m) g.) Since in this case p; = 1—(1—m) ¥ and

po=(1- m)g, it follows from the proposition that cooperation will be globally

1—2x

stable if b [1 — (1 — m) —(l—m)g > ¢ thatis, if b(1 +m) > 2c.
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